Modern Atomic theory

The modern atomic theory is simply the modifications of the limitations of dalton’s atomic theory

This first atomic theory (Dalton’s) explained a lot, but as science continued to advance, new information and new discoveries made it clear that the theory needed to be modified

One of these new discoveries came at the end of the 19th century, with the discovery of a subatomic particle, called an electron.

Atoms are now know to be composed of smaller parts called subatomic particles.

Electron (e-): The electron is a very light particle. It has a mass of 9.11 x 10−31 kg. Scientists believe that the electron can be treated as a point particle or elementary particle meaning that it can’t be broken down into anything smaller. The electron also carries one unit of negative electric charge which is the same as 1.6 x 10−19 C (Coulombs)

Proton (P+): Each proton carries one unit of positive electric charge. Since we know that atoms are electrically neutral, i.e. do not carry any extra charge, then the number of protons in an atom has to be the same as the number of electrons to balance out the positive and negative charge to zero. The total positive charge of a nucleus is equal to the number of protons in the nucleus. The proton is much heavier than the electron (10 000 times heavier!) and has a mass of 1.6726 x 10−27 kg. When we talk about the atomic mass of an atom, we are mostly referring to the combined mass of the protons and neutrons, i.e. the nucleons.

Neutron(n0): The neutron is electrically neutral i.e. it carries no charge at all. Like the proton, it is much heavier than the electron and its mass is 1.6749 x 10−27 kg (slightly heavier than the proton)

Note; Hydrogen is the only element with no neutron.

The modern atomic theory states that atoms of one element are the same, while atoms of different elements are different. What makes atoms of different elements different? The fundamental characteristic that all atoms of the same element share is the number of protons. All atoms of hydrogen have one and only one proton in the nucleus; all atoms of iron have 26 protons in the nucleus. This number of protons is so important to the identity of an atom that it is called the atomic number of the element. Thus, hydrogen has an atomic number of 1, while iron has an atomic number of 26. Each element has its own characteristic atomic number.

Note; Atomic number = number of proton

Atoms of the same element can have different numbers of neutrons, however. Atoms of the same element (i.e., atoms with the same number of protons) with different numbers of neutrons are called isotopes. Most naturally occurring elements exist as isotopes. For example, most hydrogen atoms have a single proton in their nucleus. However, a small number (about one in a million) of hydrogen atoms have a proton and a neutron in their nuclei. This particular isotope of hydrogen is called deuterium. A very rare form of hydrogen has one proton and two neutrons in the nucleus; this isotope of hydrogen is called tritium. The sum of the number of protons and neutrons in the nucleus is called the mass number of the isotope.